Annotation Boost (Optional)
Annotation Boost is an advanced validation tool that enhances annotation confidence through multiple iterations of analysis. It's particularly useful for:
- Validating low-confidence annotations
- Getting detailed insights into specific cell clusters
- Resolving ambiguous cell type assignments
- Generating comprehensive validation reports
Required Components
-
Input Data:
- Full results CSV from CASSIA batch analysis
- Original marker gene file (Seurat output or custom comlete marker file that contains all the statistics.)
- Cluster context information
- Specific cluster identifier
-
Model Configuration:
- Recommended:
anthropic/claude-3.5-sonnet
via OpenRouter
- Recommended:
Running Annotation Boost
# Setup parameters validation_config <- list( model = "anthropic/claude-3.5-sonnet", provider = "openrouter" ) # Define cluster information cluster_info <- "Human PBMC" #Specify the cluster you want to validate target_cluster = "CD4+ T cell" # Run validation runCASSIA_annotationboost( # Required parameters full_result_path = "cell_type_analysis_results.csv", marker = marker_data, cluster_name = target_cluster, major_cluster_info = cluster_info, output_name = "Cluster1_report", num_iterations = 5, # Number of validation rounds # Model configuration model = validation_config$model, provider = validation_config$provider, )
R
Parameter Details
full_result_path
: Path to original CASSIA resultsmarker
: Marker gene data (same as used in initial analysis)cluster_name
: Target cluster namemajor_cluster_info
: Dataset contextnum_iterations
: Number of validation rounds (default: 5)
Troubleshooting
-
Low Confidence Results:
- Review the quality of the clusters, in terms of doublet, mixed, or low quality clusters.
- Review marker gene quality
-
Inconsistent Results:
- Check marker gene consistency
- Verify input data quality